Serveur d'exploration Glutathion S-transférase végétale

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Photoprotective Acclimation of the Arabidopsis thaliana Leaf Proteome to Fluctuating Light.

Identifieur interne : 000076 ( Main/Exploration ); précédent : 000075; suivant : 000077

Photoprotective Acclimation of the Arabidopsis thaliana Leaf Proteome to Fluctuating Light.

Auteurs : Stefan Niedermaier [Allemagne] ; Trang Schneider [Allemagne] ; Marc-Oliver Bahl [Allemagne] ; Shizue Matsubara [Allemagne] ; Pitter F. Huesgen [Allemagne]

Source :

RBID : pubmed:32194630

Abstract

Plants are subjected to strong fluctuations in light intensity in their natural growth environment, caused both by unpredictable changes due to weather conditions and movement of clouds and upper canopy leaves and predictable changes during day-night cycle. The mechanisms of long-term acclimation to fluctuating light (FL) are still not well understood. Here, we used quantitative mass spectrometry to investigate long-term acclimation of low light-grown Arabidopsis thaliana to a FL condition that induces mild photooxidative stress. On the third day of exposure to FL, young and mature leaves were harvested in the morning and at the end of day for proteome analysis using a stable isotope labeling approach. We identified 2,313 proteins, out of which 559 proteins exhibited significant changes in abundance in at least one of the four experimental groups (morning-young, morning-mature, end-of-day-young, end-of-day-mature). A core set of 49 proteins showed significant responses to FL in three or four experimental groups, which included enhanced accumulation of proteins involved in photoprotection, cyclic electron flow around photosystem I, photorespiration, and glycolysis, while specific glutathione transferases and proteins involved in translation and chlorophyll biosynthesis were reduced in abundance. In addition, we observed pathway- and protein-specific changes predominantly at the end of day, whereas few changes were observed exclusively in the morning. Comparison of the proteome data with the matching transcript data revealed gene- and protein-specific responses, with several chloroplast-localized proteins decreasing in abundance despite increased gene expression under FL. Together, our data shows moderate but widespread alterations of protein abundance during acclimation to FL and suggests an important role of post-transcriptional regulation of protein abundance.

DOI: 10.3389/fgene.2020.00154
PubMed: 32194630
PubMed Central: PMC7066320


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Photoprotective Acclimation of the
<i>Arabidopsis thaliana</i>
Leaf Proteome to Fluctuating Light.</title>
<author>
<name sortKey="Niedermaier, Stefan" sort="Niedermaier, Stefan" uniqKey="Niedermaier S" first="Stefan" last="Niedermaier">Stefan Niedermaier</name>
<affiliation wicri:level="3">
<nlm:affiliation>ZEA-3 Analytics, Forschungszentrum Jülich, Jülich, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>ZEA-3 Analytics, Forschungszentrum Jülich, Jülich</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Juliers</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schneider, Trang" sort="Schneider, Trang" uniqKey="Schneider T" first="Trang" last="Schneider">Trang Schneider</name>
<affiliation wicri:level="3">
<nlm:affiliation>IBG-2 Plant Sciences, Forschungszentrum Jülich, Jülich, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>IBG-2 Plant Sciences, Forschungszentrum Jülich, Jülich</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Juliers</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>iGRAD-Plant, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>iGRAD-Plant, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Düsseldorf</region>
<settlement type="city">Düsseldorf</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bahl, Marc Oliver" sort="Bahl, Marc Oliver" uniqKey="Bahl M" first="Marc-Oliver" last="Bahl">Marc-Oliver Bahl</name>
<affiliation wicri:level="3">
<nlm:affiliation>IBG-2 Plant Sciences, Forschungszentrum Jülich, Jülich, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>IBG-2 Plant Sciences, Forschungszentrum Jülich, Jülich</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Juliers</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Matsubara, Shizue" sort="Matsubara, Shizue" uniqKey="Matsubara S" first="Shizue" last="Matsubara">Shizue Matsubara</name>
<affiliation wicri:level="3">
<nlm:affiliation>IBG-2 Plant Sciences, Forschungszentrum Jülich, Jülich, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>IBG-2 Plant Sciences, Forschungszentrum Jülich, Jülich</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Juliers</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Huesgen, Pitter F" sort="Huesgen, Pitter F" uniqKey="Huesgen P" first="Pitter F" last="Huesgen">Pitter F. Huesgen</name>
<affiliation wicri:level="3">
<nlm:affiliation>ZEA-3 Analytics, Forschungszentrum Jülich, Jülich, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>ZEA-3 Analytics, Forschungszentrum Jülich, Jülich</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Juliers</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Medical Faculty and University Hospital, University of Cologne, Cologne, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Medical Faculty and University Hospital, University of Cologne, Cologne</wicri:regionArea>
<wicri:noRegion>Cologne</wicri:noRegion>
<wicri:noRegion>Cologne</wicri:noRegion>
<wicri:noRegion>Cologne</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32194630</idno>
<idno type="pmid">32194630</idno>
<idno type="doi">10.3389/fgene.2020.00154</idno>
<idno type="pmc">PMC7066320</idno>
<idno type="wicri:Area/Main/Corpus">000186</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000186</idno>
<idno type="wicri:Area/Main/Curation">000186</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000186</idno>
<idno type="wicri:Area/Main/Exploration">000186</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Photoprotective Acclimation of the
<i>Arabidopsis thaliana</i>
Leaf Proteome to Fluctuating Light.</title>
<author>
<name sortKey="Niedermaier, Stefan" sort="Niedermaier, Stefan" uniqKey="Niedermaier S" first="Stefan" last="Niedermaier">Stefan Niedermaier</name>
<affiliation wicri:level="3">
<nlm:affiliation>ZEA-3 Analytics, Forschungszentrum Jülich, Jülich, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>ZEA-3 Analytics, Forschungszentrum Jülich, Jülich</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Juliers</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schneider, Trang" sort="Schneider, Trang" uniqKey="Schneider T" first="Trang" last="Schneider">Trang Schneider</name>
<affiliation wicri:level="3">
<nlm:affiliation>IBG-2 Plant Sciences, Forschungszentrum Jülich, Jülich, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>IBG-2 Plant Sciences, Forschungszentrum Jülich, Jülich</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Juliers</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>iGRAD-Plant, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>iGRAD-Plant, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Düsseldorf</region>
<settlement type="city">Düsseldorf</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bahl, Marc Oliver" sort="Bahl, Marc Oliver" uniqKey="Bahl M" first="Marc-Oliver" last="Bahl">Marc-Oliver Bahl</name>
<affiliation wicri:level="3">
<nlm:affiliation>IBG-2 Plant Sciences, Forschungszentrum Jülich, Jülich, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>IBG-2 Plant Sciences, Forschungszentrum Jülich, Jülich</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Juliers</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Matsubara, Shizue" sort="Matsubara, Shizue" uniqKey="Matsubara S" first="Shizue" last="Matsubara">Shizue Matsubara</name>
<affiliation wicri:level="3">
<nlm:affiliation>IBG-2 Plant Sciences, Forschungszentrum Jülich, Jülich, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>IBG-2 Plant Sciences, Forschungszentrum Jülich, Jülich</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Juliers</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Huesgen, Pitter F" sort="Huesgen, Pitter F" uniqKey="Huesgen P" first="Pitter F" last="Huesgen">Pitter F. Huesgen</name>
<affiliation wicri:level="3">
<nlm:affiliation>ZEA-3 Analytics, Forschungszentrum Jülich, Jülich, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>ZEA-3 Analytics, Forschungszentrum Jülich, Jülich</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Juliers</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Medical Faculty and University Hospital, University of Cologne, Cologne, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Medical Faculty and University Hospital, University of Cologne, Cologne</wicri:regionArea>
<wicri:noRegion>Cologne</wicri:noRegion>
<wicri:noRegion>Cologne</wicri:noRegion>
<wicri:noRegion>Cologne</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in genetics</title>
<idno type="ISSN">1664-8021</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plants are subjected to strong fluctuations in light intensity in their natural growth environment, caused both by unpredictable changes due to weather conditions and movement of clouds and upper canopy leaves and predictable changes during day-night cycle. The mechanisms of long-term acclimation to fluctuating light (FL) are still not well understood. Here, we used quantitative mass spectrometry to investigate long-term acclimation of low light-grown
<i>Arabidopsis thaliana</i>
to a FL condition that induces mild photooxidative stress. On the third day of exposure to FL, young and mature leaves were harvested in the morning and at the end of day for proteome analysis using a stable isotope labeling approach. We identified 2,313 proteins, out of which 559 proteins exhibited significant changes in abundance in at least one of the four experimental groups (morning-young, morning-mature, end-of-day-young, end-of-day-mature). A core set of 49 proteins showed significant responses to FL in three or four experimental groups, which included enhanced accumulation of proteins involved in photoprotection, cyclic electron flow around photosystem I, photorespiration, and glycolysis, while specific glutathione transferases and proteins involved in translation and chlorophyll biosynthesis were reduced in abundance. In addition, we observed pathway- and protein-specific changes predominantly at the end of day, whereas few changes were observed exclusively in the morning. Comparison of the proteome data with the matching transcript data revealed gene- and protein-specific responses, with several chloroplast-localized proteins decreasing in abundance despite increased gene expression under FL. Together, our data shows moderate but widespread alterations of protein abundance during acclimation to FL and suggests an important role of post-transcriptional regulation of protein abundance.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32194630</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-8021</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in genetics</Title>
<ISOAbbreviation>Front Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>Photoprotective Acclimation of the
<i>Arabidopsis thaliana</i>
Leaf Proteome to Fluctuating Light.</ArticleTitle>
<Pagination>
<MedlinePgn>154</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fgene.2020.00154</ELocationID>
<Abstract>
<AbstractText>Plants are subjected to strong fluctuations in light intensity in their natural growth environment, caused both by unpredictable changes due to weather conditions and movement of clouds and upper canopy leaves and predictable changes during day-night cycle. The mechanisms of long-term acclimation to fluctuating light (FL) are still not well understood. Here, we used quantitative mass spectrometry to investigate long-term acclimation of low light-grown
<i>Arabidopsis thaliana</i>
to a FL condition that induces mild photooxidative stress. On the third day of exposure to FL, young and mature leaves were harvested in the morning and at the end of day for proteome analysis using a stable isotope labeling approach. We identified 2,313 proteins, out of which 559 proteins exhibited significant changes in abundance in at least one of the four experimental groups (morning-young, morning-mature, end-of-day-young, end-of-day-mature). A core set of 49 proteins showed significant responses to FL in three or four experimental groups, which included enhanced accumulation of proteins involved in photoprotection, cyclic electron flow around photosystem I, photorespiration, and glycolysis, while specific glutathione transferases and proteins involved in translation and chlorophyll biosynthesis were reduced in abundance. In addition, we observed pathway- and protein-specific changes predominantly at the end of day, whereas few changes were observed exclusively in the morning. Comparison of the proteome data with the matching transcript data revealed gene- and protein-specific responses, with several chloroplast-localized proteins decreasing in abundance despite increased gene expression under FL. Together, our data shows moderate but widespread alterations of protein abundance during acclimation to FL and suggests an important role of post-transcriptional regulation of protein abundance.</AbstractText>
<CopyrightInformation>Copyright © 2020 Niedermaier, Schneider, Bahl, Matsubara and Huesgen.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Niedermaier</LastName>
<ForeName>Stefan</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>ZEA-3 Analytics, Forschungszentrum Jülich, Jülich, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schneider</LastName>
<ForeName>Trang</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>IBG-2 Plant Sciences, Forschungszentrum Jülich, Jülich, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>iGRAD-Plant, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bahl</LastName>
<ForeName>Marc-Oliver</ForeName>
<Initials>MO</Initials>
<AffiliationInfo>
<Affiliation>IBG-2 Plant Sciences, Forschungszentrum Jülich, Jülich, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Matsubara</LastName>
<ForeName>Shizue</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>IBG-2 Plant Sciences, Forschungszentrum Jülich, Jülich, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Huesgen</LastName>
<ForeName>Pitter F</ForeName>
<Initials>PF</Initials>
<AffiliationInfo>
<Affiliation>ZEA-3 Analytics, Forschungszentrum Jülich, Jülich, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Medical Faculty and University Hospital, University of Cologne, Cologne, Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>03</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Genet</MedlineTA>
<NlmUniqueID>101560621</NlmUniqueID>
<ISSNLinking>1664-8021</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">acclimation</Keyword>
<Keyword MajorTopicYN="N">fluctuating light</Keyword>
<Keyword MajorTopicYN="N">leaf proteome</Keyword>
<Keyword MajorTopicYN="N">photooxidative stress</Keyword>
<Keyword MajorTopicYN="N">photoprotection</Keyword>
<Keyword MajorTopicYN="N">protein turnover</Keyword>
<Keyword MajorTopicYN="N">quantitative proteomics</Keyword>
<Keyword MajorTopicYN="N">time of day</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>10</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>02</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>3</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>3</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32194630</ArticleId>
<ArticleId IdType="doi">10.3389/fgene.2020.00154</ArticleId>
<ArticleId IdType="pmc">PMC7066320</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 1996 Dec;112(4):1631-1640</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2018 Feb;176(2):977-989</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29046421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Jul;162(3):1246-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23674104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Jul 02;9:873</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30013583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2017 Feb;29(2):207-228</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28138016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2017 Jun;174(2):689-699</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28153922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2000;63(1):97-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16252168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 1996 Apr;37(3):293-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8673340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2011 Nov;181(5):527-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21893248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2018 Sep 14;69(20):4651-4654</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30307518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 Oct;80(2):292-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25081859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 May;168(1):74-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25810096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2016 Oct;57(10):2122-2132</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27481895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Sep;1847(9):900-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25615587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Aug 11;6:621</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26322062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):E203-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24367078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2007 Oct;1767(10):1233-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17765199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1970 Aug 15;227(5259):680-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5432063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2019 Nov;18(11):2335-2347</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31471496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2016 Aug;1864(8):967-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26784836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 May 28;279(22):22866-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15033974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8529-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26124102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rapid Commun Mass Spectrom. 2011 Jan 15;25(1):184-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21154902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jan 4;45(D1):D1100-D1106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27924013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1984 Apr;138(1):141-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6731838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2009;4(4):484-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19300442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2015 Jul;14(7):2014-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25991688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Apr 20;43(7):e47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25605792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Jan;56(411):435-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15642715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2019 Jul 2;47(W1):W191-W198</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31066453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2008 Dec;26(12):1367-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19029910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2004 Sep 7;43(35):11321-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15366942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2017;1574:35-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28315242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Apr 30;15:320</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24884362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2010 Jun;9(6):1063-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20061580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Appl Stat. 2016 Jun;10(2):946-963</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28367255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2009;5:314</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19888209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2008 Jul;133(3):566-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18433418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2012 Apr;185-186:86-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22325869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2018 Aug 13;14(8):e8126</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30104418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2017 Apr;173(4):2163-2179</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28184008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Oct;15(10):582-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20729129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2019 Apr;179(4):1632-1657</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30718349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 May;66(9):2401-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25573858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2018;1711:133-148</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29344888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2007;2(8):1896-906</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17703201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;179(4):930-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18537892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 May 13;5:188</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24860580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2012 Sep;113(1-3):221-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22729524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1993 Nov;103(3):835-843</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12231982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2019 Jan 8;47(D1):D442-D450</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30395289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9705-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9689145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2012 Dec 19;367(1608):3486-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23148275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2017 Jan 1;58(1):35-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28119424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2013 Aug 2;88:14-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23085607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2016 Nov;34(11):1130-1136</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27701404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2020 Mar;225(6):2498-2512</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31446639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2017 Jul 20;68(16):4463-4477</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28673035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2015 Mar 03;1:15017</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27246884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2016 Sep;11(9):e1218587</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27494214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Mar;125(3):1450-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11244124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49:249-279</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2019 Aug;223(3):1073-1105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30802971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Cell Dev Biol. 2018 Aug;80:3-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28733165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:601-639</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Aug 9;110(3):361-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12176323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2018 Aug;23(8):667-676</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29887276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Aug 09;6:31252</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27502328</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>District de Cologne</li>
<li>District de Düsseldorf</li>
<li>Rhénanie-du-Nord-Westphalie</li>
</region>
<settlement>
<li>Düsseldorf</li>
<li>Juliers</li>
</settlement>
</list>
<tree>
<country name="Allemagne">
<region name="Rhénanie-du-Nord-Westphalie">
<name sortKey="Niedermaier, Stefan" sort="Niedermaier, Stefan" uniqKey="Niedermaier S" first="Stefan" last="Niedermaier">Stefan Niedermaier</name>
</region>
<name sortKey="Bahl, Marc Oliver" sort="Bahl, Marc Oliver" uniqKey="Bahl M" first="Marc-Oliver" last="Bahl">Marc-Oliver Bahl</name>
<name sortKey="Huesgen, Pitter F" sort="Huesgen, Pitter F" uniqKey="Huesgen P" first="Pitter F" last="Huesgen">Pitter F. Huesgen</name>
<name sortKey="Huesgen, Pitter F" sort="Huesgen, Pitter F" uniqKey="Huesgen P" first="Pitter F" last="Huesgen">Pitter F. Huesgen</name>
<name sortKey="Matsubara, Shizue" sort="Matsubara, Shizue" uniqKey="Matsubara S" first="Shizue" last="Matsubara">Shizue Matsubara</name>
<name sortKey="Schneider, Trang" sort="Schneider, Trang" uniqKey="Schneider T" first="Trang" last="Schneider">Trang Schneider</name>
<name sortKey="Schneider, Trang" sort="Schneider, Trang" uniqKey="Schneider T" first="Trang" last="Schneider">Trang Schneider</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantGlutaTransV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000076 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000076 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantGlutaTransV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32194630
   |texte=   Photoprotective Acclimation of the Arabidopsis thaliana Leaf Proteome to Fluctuating Light.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32194630" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantGlutaTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 15:50:29 2020. Site generation: Sat Nov 21 15:50:53 2020